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The solution of the Hertz axisymmetric contact problem�
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Abstract

The main terms of the asymptotic form of the solution of the contact problem of the compression without friction of an elastic body
and a punch initially in point contact are constructed by the method of matched asymptotic expansions using an improved matching
procedure. The condition of unilateral contact is formulated taking account of tangential displacements on the contact surface. An
asymptotic solution of the problem for the boundary layer is constructed by the complex potential method. An asymptotic model is
constructed, extending the Hertz theory to the case where the surfaces of the punch and elastic body in the vicinity of the contact
area are approximated by paraboloids of revolution. The problem of determining the convergence of the contacting bodies from the
magnitude of the compressive force is reduced to the problem of calculating the so-called coefficient of local compliance, which is
an integral characteristic of the geometry of the elastic body and its fixing conditions.
© 2006 Elsevier Ltd. All rights reserved.

1. Statement of the problem

Suppose a linearly elastic body occupies a three-dimensional region � with boundary ∂� = �c ∪ �u ∪ ��. We will
introduce a Cartesian system of coordinates with centre at the point O on the boundary section �c. To fix our ideas,
we will assume that the Ox3 axis is directed into the region �, and here the plane Ox1x2 touches the surface �c at the
point O.

We will assume that the surface of the body � is securely fixed on the boundary section �u, and that on section ��

it is subjected to the action of surface loads with a density vector q(x). In such a case, the vector u(x) of displacements
of points of the elastic body satisfies the relations

(1.1)

(1.2)

(1.3)

where L(∇x) is the Lamé operator, � and � are Lamé parameters, and �(n)(x) is the stress vector on an area with unit
vector of the outward normal n(x).

On the section �c the surface of the body � is in contact with an absolutely rigid body (the punch), the surface of
which is specified by the equation �(x) = 0, where �(x) < 0 inside the punch and �(x) > 0 outside it. Bearing in mind
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the case of a punch in the form of a paraboloid with a convex surface �c, where the contact area is localised in the
vicinity of point O, on �c we will set more precise conditions of unilateral contact, formulated by Kravchuk,1

(1.4)

(1.5)

(1.6)

where �(n)
N = �(n)n is the normal stress and �

(n)
T = �(n) − σ

(n)
N n is the shear stress vector.

The contact problem (1.1)–(1.6) is equivalent1 to the problem of the minimum functional of potential energy on a
set of admissible displacements satisfying conditions (1.2) and (1.4).

Below, we will consider the case

(1.7)

where the constant �0 > 0 determines the magnitude of the displacement of the punch.
We will also assume that the surface �c in the vicinity of point O is mainly defined by the equation

(1.8)

With the aim of using the perturbation method, we will introduce the small parameter �, assuming that

(1.9)

Then, for small values of the parameter �, using Hertz theory (see, for example, Ref. 2) the contact area �� (unknown
a priori) will mainly comprise a circular spot of diameter O(

√
�).

The first refinement of the statement of the contact problem was proposed by Shtayerman. In Refs. 3,4 (see also
Refs. 5,6), he extended Hertz theory to the case where the gap between the surfaces of elastic bodies initially in contact

at a single point is defined mainly by the expression A(x2
1 + k2x2

2)
2
, where A and k are constants. Numerical methods

were developed (see Refs. 7,8, etc.) for solving contact problems for an elastic body of finite dimensions. In cases
where the body � can be replaced by a half-space, it is possible to use an approximate analytical solution9 of the contact
problem in a refined statement for which a numerical solution was obtained earlier.10 In the case of a plane boundary
section �c, and without taking into account the tangential displacements in the contact area, an asymptotic solution
was constructed.11 Earlier, contact problems with spherical contact surfaces and a previously unknown interface of
boundary conditions were investigated12,13 using Aleksandrov’s asymptotic method14 (see also Ref. 15, Section 55).

In the present paper, using the method of matched asymptotic expansions16,17 (see also the review Ref. 18) and
an improved matching procedure,19 the asymptotic form of the solution of the problem of unilateral contact without
friction (1.1)–(1.6) with additional assumptions (1.7)–(1.9) and � → 0+ is constructed, and the first correction to the
solution obtained by Hertz theory is written out in explicit form. The problem of determining the convergence of the
contacting bodies from the magnitude of the compressive force is reduced to the problem of calculating the so-called
coefficient of local compliance. The construction of the asymptotic form roughly follows the approach developed in
Ref. 11.

2. The asymptotic form of Green’s vector function with a pole on a curved boundary

We will denote by G(x) the solution of the homogeneous problem

(2.1)

(2.2)

which possesses the following asymptotic expansion at the origin of coordinates

(2.3)
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Here T(x) is the solution of the Boussinesq problem (see, for example, Ref. 20) concerning the action along the Ox3
axis on an elastic half-space x3 ≥ 0 of a single concentrated force.

We recall that, in a cylindrical system of coordinates r, �, z, in view of symmetry, T�(r, �, z) ≡ 0, and the radial and
vertical projections of the vector T(x) do not depend on the angle �, and

(2.4)

where 	 is Poisson’s ratio and s = √
r2 + z2.

We will write the following term in asymptotic formula (2.3), due to the distortion of the surface �c in the vicinity of
the point O. For this, we will investigate the behaviour as � → 0 of the solution T�(r, �, z) of the Boussinesq secondary
perturbed problem of the action at the origin of coordinates of a single concentrated force on an elastic semi-infinite
body z ≥ ��1(r), bounded by the surface

(2.5)

[Note that, in formula (2.5), � is a secondary parameter and bears no relation to (1.9).]
By virtue of the axial symmetry, we will have

where er(�) = cos�e1 + sin�e2 is the coordinate vector.
We will use the boundary shape perturbation method16,21 (see also the papers on the mechanics of cracks Refs. 22,23).

Applying obvious expansions (below, for simplicity, the dependence on the angular coordinate � is not indicated)

we obtain

(2.6)

Here

The subscript z after the comma denotes differentiation with respect to the z coordinate, while differentiation with
respect to r is denoted by a prime.

Expansion (2.6) enables us to take the boundary condition

(2.7)

on the unperturbed surface z = 0 of the elastic half-space. In fact, we will substitute into relation (2.7) the expansion
(2.6) and the following

(2.8)

Collecting terms with the factor �, to determine the second term of expansion (2.8) we derive the boundary condition

(2.9)

Direct calculations using formulae (2.4) with z = 0 and r > 0 give

Substituting these expressions into the right-hand side of boundary condition (2.9), and recalling relation (2.5), we
obtain

(2.10)
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We will construct the vector function t(r, �, z) using the Papkovich–Neuber representation

(2.11)

On the basis of calculations,24 taking expressions (2.10) into account, we find the harmonic potentials �(r, z) and 
(r,
z) in the form

(2.12)

Here, we have used the notation

Hence, substituting expressions (2.12) into formulae (2.11), we will have

(2.13)

Let us return to the problem of refining the asymptotic form (2.3) of Green’s vector function G(x). Taking into
account assumption (1.8) concerning the approximation of the surface �c in the vicinity of the point O by a circular
paraboloid, on the basis of expansion (2.8) we establish the following:

(2.14)

where t(x) is a vector function with cylindrical components (2.13), and Ã is a constant vector. Note that the quantity

(2.15)

is an analogue of the corresponding coefficient of local compliance introduced earlier25 for the case of a plane boundary
�c.

3. Outer asymptotic expansion

We will describe the structure of the solution u(x) of the initial problem (1.1)–(1.6) in the region � at a distance
from the contact area �e. The asymptotic expansion for the displacement field in the region indicated will be denoted
by v(x).

Let v0*(x) be the solution of the problem

(3.1)

Then, by the method of matched asymptotic expansions, we will mainly have

(3.2)

where G(x) is the solution of problem (2.1)–(2.3).
The quantity P, the dependence of which on the parameter � is not indicated for simplicity, is the equivalent of the

contact pressures transferred to body � from the punch via the contact area �e. It is clear that, because of the absence
of friction [see Eq. (1.5)], the contact pressures act along a normal to the surface �c.

The indeterminate coefficient P is found by matching the outer asymptotic expansion (3.2) and the inner asymptotic
expansion, the domain of validity of which covers the contact area. To establish the order of P as � → 0, we will resort
to the Hertz theory, which gives the main term of the asymptotic form of the solution of the contact problem.
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Thus, free displacement of the point O of the body � along the normal to the surface �c when there is no punch
(due to the effect of surface loads on ��) would be a quantity −��0∗

3 (O). When the punch is indented to a depth �0
(from a level x3 = 0 along the Ox3 axis directed into the body �), mechanical work must be performed along a path of
length ��∗

0 − ��0∗
3 (O). Now, bearing in mind assumptions (1.7) and (1.8) concerning the axial symmetry of the punch

surface and of the surface �c close to it, we obtain that the contact area �e is mainly circular with a radius

(3.3)

In this case, we obtain

(3.4)

Thus, relations (3.3) and (3.4) provide a basis for putting

(3.5)

Relation (3.3) then dictates the introduction of extended coordinates with an extension factor �–1/2. In fact, by
replacing the coordinates as follows:

(3.6)

we obtain that the radius a* of the projection of the contact area onto the O�1�2 plane in the main term of the asymptotic
form does not depend on the parameter �.

The introduction of extended coordinates (3.6) enables us to describe the stress–strain state in the region of local
perturbations (see Ref. 26, Section 133) under the base of the punch. In the intermediate region, the condition for
matching of the outer and inner asymptotic expansions must be satisfied.16 To derive this, asymptotic expansion of the
vector function v(x) as |x| → 0 is necessary.

According to relation (2.14), we have

(3.7)

where V1,k(x) are linearly independent homogeneous vector polynomials of the first degree, satisfying in half-space
x3 ≥ 0 the homogeneous Lamé system, and on its boundary the boundary conditions of no stresses (see, for example,
Refs. 27,28).

Changing on both sides of this relation to extended coordinates (3.6), and taking into account the second relation
of (3.5), after rearranging the terms we obtain

(3.8)

(3.9)

Here

(3.10)

Note that, in deriving expansion (3.8), we used explicit expressions (2.4) and (2.13) for the vectors T(x) and t(x).
The estimate O(�2|�|ln(�|�|/R1)) of the residual term in expansion (3.8) is determined by the error of formula (3.7).

4. Determination of the coordinates of the centre of the contact area

The inner asymptotic expansion for the displacement field in the immediate vicinity of the base of the punch will
be constructed in extended coordinates (3.6) and denoted by w(�).



626 I.I. Argatov / Journal of Applied Mathematics and Mechanics 70 (2006) 621–635

By the method of matched asymptotic expansions, the vector function w(�) is constructed in the semi-infinite region

 ≥ 1

√
��1(�) bounded by the surface

(4.1)

where 
 = 
3 and � =
√

�2
1 + �2

2 are extended cylindrical coordinates.
The condition for matching the inner asymptotic expansion w(�) and the outer asymptotic expansion v(x) according

to expansion (3.8) dictates, for the vector w(�) in the matching zone (for|�| =
√


2 + �2 �−1/4R1), the following
asymptotic behaviour

(4.2)

We will assume that

(4.3)

Since, the vector V*(�; �) by construction (see Eq. (3.9)) satisfies the Lamé system of equations, this will also be
required of the vector function W*(�).

Substituting the sum (4.3) into relation (4.2), we obtain

(4.4)

The boundary condition of unilateral contact (1.4)–(1.6), written with respect to the vector function w(�), will be
extended to the entire surface (4.1). Then, after the replacement of coordinates (3.6), condition (1.4) takes the form

(4.5)

Resorting again to the method of boundary shape perturbation, we take the boundary condition (4.5) on the plane
�3 = 0 which, in the limit, as � → 0, is approximated by paraboloid (4.1). Thus, leaving only the first correction, i.e.
terms O(

√
�) compared with unity, we obtain

(4.6)

On the contact area �*, relation (4.6) with the equality sign must be satisfied. Therefore, for all points (�1, �2) ∈ �*,
according to concept (4.3), we will have

(4.7)

Here, we have used the equality

(4.8)

written taking into account definition (3.9), and the following notation is introduced

(4.9)

The coefficients �0∗
1,1 and �0∗

1,2 have the meaning of small angles of rotation (about the coordinate axes Ox1 and Ox2) of
an area of the surface of the elastic body � at the point O, when the displacement field v0*(x) is defined as the solution
of problem (3.1).
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Thus, if in boundary condition (4.7) we make the replacement of coordinates

then the transformed boundary condition will depend only on the expression �̂
2
1 + �̂

2
2. Taking the axial symmetry of

relation (4.4) into account, which in the main does not undergo any changes, the problem for determining the vector
function W*(�) turns out to be axisymmetrical, while the contact area �* turns out to be circular with centre at the
point (�o

1, �o
2) with coordinates determined by the first two formulae of (4.9).

Further, since when |�̂| → ∞ the expansion

holds, within the framework of the method or matched asymptotic expansions the outer asymptotic expansion (3.2) is
made more precise by adding singular terms corresponding to the action on the boundary of the body � at the point
O of concentrated moments M1 = �2P ∗ �o

2 and M2 = −�2P ∗ �o
1. It is clear that these terms have no effect on the

process of constructing the first correction. Note also that the appearance of concentrated moments at the point O is
the consequence of the displacement of the centre of the contact area �∗

� with respect to the point O.
Below, in order to keep the formulae simple, the “caps” over the centred coordinates will be omitted.

5. The axisymmetric problem of unilateral contact for the boundary layer

Let a* be the radius of contact �*. On the basis of the above, boundary condition (4.7) can be rewritten in the form

(5.1)

Let us now return to the remaining relations (1.5) and (1.6) of the boundary condition of unilateral contact. It is not
difficult to check that the unit vector of the outward normal nε(�) and the tangential vector in the radial direction tε(�)
allow of expansions [in all cases below, �1 = �1(�)]

(5.2)

Using these expansions and proceeding in the same way as when deriving expansion (2.6), we obtain

(5.3)

For the normal stress �
(n)
N = �(n)n� and the shear stress �

(n)
T = �(n)t�, expansions (5.2) and (5.3) will be

(5.4)

(5.5)

Thus, the boundary condition expressing the absence of friction (between the touching surfaces of the elastic body
and punch) and the shear loads on �c outside the contact area, according to expressions (1.5), (1.6) and (5.5), is taken
on the unperturbed boundary as follows:

(5.6)

Note that the vector V*(�; �) on the boundary of the half-space 
 ≥ 0 satisfies the boundary conditions of no stresses
and consequently has no influence when setting up relation (5.6).
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Finally, the boundary condition �
(n)
N (u; x) when x ∈ �c\�e, expressing the absence of normal loads outside the

contact area ��, according to relations (1.5) and (5.4), is shifted to the unperturbed boundary 
 = 0 as follows:

(5.7)

The construction of the inner asymptotic expansion w(�) according to representation (4.3) is reduced to searching
for the vector function W*(�) that satisfies, in the half-space �3 ≥ 0, the equations of the Lamé system, on its boundary,
the mixed boundary conditions (5.1), (5.6) and (5.7), and at infinity, the asymptotic condition (4.4).

For the contact pressure p(u; x) = −�0
N (u; x) on the contact area ��, on changing to the extended coordinates (3.6),

in view of the relation ∂/∂xi = �−1/2∂/∂�i, we obtain the expression

Then, taking into account formulae (4.3) and (5.4), we find

(5.8)

As shown, the problem of unilateral contact for the boundary layer is axisymmetrical and structurally non-linear,
since the radius a* of the contact area �* must be determined in the course of solving the problem from the condition
that the contact pressure (5.8) vanishes at the edge of the contact area.

6. Solution of the problem for the boundary layer

The vector function W*(�) will be constructed using the Papkovich–Neuber representation (2.11) together with the
method of complex potentials.29–32

Making, in the Papkovich–Neuber representation (2.11), the substitution

we obtain the following symmetrical representation32

(6.1)

Here, the components of the stresses are expressed as follows:

(6.2)

We emphasize that expressions (6.2) are transformed taking into account Laplace’s equation, which should be satisfied
by the harmonic potentials N and S.

We will assume that

(6.3)

(6.4)

(6.5)

The densities n(t) and s2(t) and the coefficient c1 are determined by substituting expressions (6.1)–(6.5) into the
boundary conditions (5.1), (5.6) and (5.7).
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We will introduce the notation

Indirect calculations with 
 = 0 show that

(6.6)

(6.7)

(6.8)

Boundary condition (5.7) gives

(6.9)

Condition (6.9) is satisfied for the potential (6.4) by construction.
Boundary condition (5.6) must be considered separately on the contact area (when � < a*) and outide it (when

� ≥ a*). Thus, taking the equality �0
�
(N) = 0 and expressions (6.7) and (6.8) into account, we will have

(6.10)

(6.11)

Then, for the potential S1 we obtain

(6.12)

Now, substituting the final expression into boundary condition (6.10) and comparing it with the first expression of
(6.12), taking relations (4.1) into account, we find

(6.13)

Thus, substituting representation (6.4) into boundary condition (6.11) and taking formulae (6.7), (6.8) and (6.12)
into account, we derive the following boundary condition

(6.14)

We will denote the right-hand side of equality (6.14) by q2(�). Then, on the basis of the solution of Abel’s integral
equation (for details, see, for example, Ref. 32, Section 9.2), we can represent the density of integral S2 in the form

(6.15)

Below we will need the value of the vertical displacement [see the second formula of (6.1)]

(6.16)
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We substitute expression (6.15) into the right-hand side of relation (6.16) and change the order of integration. As a
result of simple calculations, we obtain

Now, substituting here the expression q2(x) from the right-hand side of equality (6.14), and integrating by parts, we
obtain

(6.17)

Then, similar to the left-hand equation of system (6.16), we obtain

(6.18)

Thus, the solution of the problem of unilateral contact for the boundary layer is expressed in terms of the complex
potentials (6.3) and (6.5), which are determined by the density n(t). To find it, we substitute expressions (6.1) and (6.4)
into the remaining boundary condition (5.1). With the same accuracy as that with which relation (5.1) was obtained,
we will have

(6.19)

and here (in the next three formulae it is assumed that � < a*)

(6.20)

When
√

�2 + 
2 → ∞, the following asymptotic relation holds

The asymptotic matching condition (4.4) will be satisfied if the following normaligation condition is satisfied

(6.21)

Eq. (6.21) enables us to establish the relation between the force P* and the displacement �∗
0. Here, the radius a* of

the contact area �* is determined by the condition for the contact pressure (5.8) at its edge to vanish.
Denoting the expression in braces in formula (5.8) by −p*(�),we will have

(6.22)

Differentiating both sides of the second formula of (6.2), we obtain �

(N,
) = 
N,



. Since direct differentiation with
respect to 
 of integral (6.3) leads to integrals which diverge in the limit as 
 → 0, we will use the formula32
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Using this formula three times, we obtain

Now, taking into account that as � → 0 the density n(t) converges to the Hertzian, we conclude that the integrals in
the expression for N0

,



 in the principal term of the asymptotic form will be polynomials in �2. Consequently, within
the framework of the accuracy of the asymptotic constructions, the second term in sum (6.22) vanishes, and we finally
have

(6.23)

Note that the previous discussion also establishes the equality N′(a∗) = 0.
We will also show that the condition n(a*) = 0, follows from the condition p*(a*) = 0. In fact, from formula (6.23)

we find

Now, applying the theorem on the average value of the integral (the continuity of the function n(t) at the point a* is
proved indirectly), we arrive at the limit

where (0, 1) � � is a certain number (depending on 	�). Hence, it immediately follows that the solution of integral
equation (6.19) should vanish at the edge of the contact area, which, we recall, yields an equation for determining the
radius a*.

7. The asymptotic form of the resultant contact pressure

Transforming the first formula of system (6.20), for the density of the integral (6.3) we derive the representation

(7.1)

We will put

(7.2)

(7.3)

The density n0(t) is obviously determined in accordance with Hertz theory

(7.4)

From the condition n(a*) = 0 in the limit as � → 0 it follows that n0(a∗
0) = 0; consequently

(7.5)

From Eq. (6.21) we obtain the expansion
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Since n0(a∗
0) = 0, the asymptotic form of the equivalent contact pressure is sought irrespective of the solution of the

problem of the variation of the contact area, which consists of determining the correction in expansion (7.3), i.e.

(7.6)

As before, from formula (6.23) we obtain

(7.7)

Formula (7.7) determines the outer asymptotic expansion for the contact pressure density that holds at a distance from
the boundary of the contact area.

We find the density n1(t) by substituting into the integral (7.1), instead of U0

 (N; �), the sum of the expression

P∗
0 (C̃� + Ã0) and the expression in braces in formula (6.19), taken with the opposite sign. For this purpose, we

calculate the terms in the density n0(t) occurring in it.
Thus, from formula (6.18) we obtain

(7.8)

where

Using formula (6.17), taking into account the quantities N′(a∗
0) = 0 and Eq. (7.4), we will have

(7.9)

The third and second formulae of (6.20) respectively yield

(7.10)

It is then easy to show that the following equality holds

(7.11)

where, by relations (6.13), (2.15), (3.10), and (7.8)–(7.10), we have

(7.12)

Substituting expression (7.12) into formula (7.11), after elementary integration, we find [see formula (7.6)]

(7.13)

(7.14)
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Formulae (7.13), (7.14), (3.10) and (7.5) give the asymptotic form of the resultant contact pressure as a function of
the displacement of the punch �0. The inverse relation is also of interest. With the accuracy with which the relations
(7.13) and (7.14) were obtained, we will have

(7.15)

The form of the functional relation (7.15) agrees with the corresponding result obtained in Ref. 33 (see formula (5.18)).
Note that it is not difficult to write in explicit form the outer asymptotic expansion for the contact pressure density

(7.7), where the function n1(t) is defined in terms of the function (7.12) by means of the formula

(7.16)

The approximate expression for the contact pressure density in closed form, suitable over the entire contact area, can
be obtained by the method described in Ref. 9.

8. The variation of the radius of the contact area

From the condition n(a*) = 0, taking expansions (7.2) and (7.3) and the equality n(a∗
0) = 0 into account, we obtain

(8.1)

where, in view of expression (7.4),

(8.2)

We will calculate the function n(�) when � = a∗
0. In the integral (7.16) we will replace the variable of integration

using the formula x = √
1 − �2 and differentiate the integrand with respect to the parameter (this operation is legitimate

as the functions in the integrand obtained are continuous in the segment [0, 1]). As a result, we will have

(8.3)

Further we differentiate expression (7.12), simplify the result and then substitute t = a∗
0�. We will have

(8.4)

Now, substituting expressions (7.12) and (8.4) into formula (8.3) and carrying out elementary integration, we find the
quantity n1(a∗

0), the substitution of which into formula (8.1), taking equality (8.2)into account, finally yields

(8.5)
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To check this result, we will take the limit on the right-hand part of relation (8.5) as R1 → ∞. In the case of a plane
boundary of an elastic body, formula (8.5) becomes

(8.6)

Formula (7.3), taking expressions (8.6) and (7.5) into account, where R0 = R2, agrees with formula (4.11) of Ref.
11 and formula (6.1) of Ref. 9, which were obtained in a different way.

Note that, in the limiting case examined, the result of Ref. 11 for the radius of the contact area is not obtained exactly,
since the formulation of the initial contact problem takes into account the tangential displacements on the surface of
the elastic body in the contact area (see relations (1.4)–(1.6)).

9. Conclusions

We recall that, according to the Hertz theory,34 when calculating local contact pressures, an elastic body can be
regarded as an elastic half-space (see, in particular, Ref. 2, Section 4.2). Here, neither the shape of the elastic body
outside the region of local perturbations nor the conditions of its fixing are considered in the calculation.

In the present paper, an asymptotic model is constructed that extends Hertz theory in the axisymmetric case, and,
more precisely, when the surface of the punch and the surface of the elastic body in the vicinity of the contact area are
approximated by paraboloids of revolution. The proposed asymptotic model includes the coefficient of local compliance
A0, which comprises the integral characteristics of the geometry of the elastic body and its fixing conditions.

We emphasize that the extension of the Hertz theory that takes into account the boundedness of the elastic body
required a more precise formulation of the contact conditions, as the corresponding corrections turn out to be of the
first order.

The results of this research were presented at the 5th Russian Conference on Mixed Problems of the Mechanics of
a Deformable Body (Saratov, August 2005).
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